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The t ime- independent  t e m p e r a t u r e  field is de te rmined  for  an infinite band and a l aye r  under  
mixed boundary condit ions.  

1. Suppose that an infinite band of width d contains s ta t ionary  sou rces  of heat .  On one su r face  we 
have the boundary condition of the third kind; on par t  of the other  surface ,  which has  a length 2l, we have 
a given heat  flux, and the remaining  pa r t  is kept at z e ro  t e m p e r a t u r e .  We shall  use  d imens ion less  coord i -  
nates  r e f e r r e d  to the quantity l and the d imens ion less  width of the band 5 = d / l .  The boundary conditions 
will be taken in the form:  

OT 
for [ x [ < c r  y = 6  + h l ( T - - T r  (1) 

@ 

OT 
for y = 0  T = 0  ( Ix l> /  l),, --~-y =q(x)  (]x[~..1). (2) 

It is  requi red  to de te rmine  the t e m p e r a t u r e  field in the band. 

The t e m p e r a t u r e  will be wri t ten as the sum of two t e r m s  

T (x, y) = t* (x, y) @ t (x, y) (3) 

where  t*(x, y) is the main t e m p e r a t u r e  field in the band containing the heat  sources ,  when the boundary 
condition (1) is sat isf ied on y = 6 and the other  sur face  is held at z e ro  t e m p e r a t u r e .  The function t*(x, y) 
will be a s sumed  to be known since it can readi ly  be found through the in tegra l  Four i e r  t r a n s f o r m .  

The main  p rob lem is to de te rmine  the additional field t(x, y) due to imposi t ion of the mixed boundary 
conditions for  y = 0. Fo r  the additional temperature field we have the following boundary conditions: 

for I x [ < o o ,  y = 6  Of f -+h i t=O;  
@ 

Ot 
for y = O  t = O  ( I x [ ~ l ) ,  =f(x)(lxl.%1), (4) @ 

f (x) = q (x) - 0t* (x, 0 ) .  
@ 

Taking the in tegra l  Four ie r  t r a n s f o r m  of the heat  t r a n s f e r  equation At = 0, and using the boundary 
conditions (4), we obtain the following s ingular  in tegra l  equation for  t' (x) = Ot(x, 0)/Ox: 

1 

- - I  

K (u) --- f L (~) sin (,lu) d,1, L (n) n th n + hd 
. n + hd thll 
0 

(5) 

(6) 
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In pa r t i cu la r ,  subst i tut ing h = r and h = 0 in Eq.  (6), we obtain the expres s ion  for  L(~) for  the case  
where  on the upper  su r face  of the band we have, respec t ive ly ,  the boundary condition of the f i r s t  and second 
kind: 

where  

1) LtB)=cth~;  2) L(rl)=thtl. (7) 

The kerne l  K(u) can be wri t ten  in the f o r m  

These  coeff icients  a re ,  in general ,  
approx imate  express ion  for  them.  

K (u) = ~ul + ~.~ bh u2~-~, (8) 

co 

01, (--  1)k-~ ~I (2k - -  1)! [L (n) - -  U n~k-~dn ' (9) 
0 

de te rmined  by numer i ca l  integration,  but when hd > 1 we can obtain an 
With this in view, we approx imate  the function L(~?) as follows: 

L0l)=cthA~l, A- -  l + h d  
hd (10> 

The m a x i m u m  re la t ive  e r r o r  introduced by the use of this approximat ion  when lad = 1 does not exceed 3.8~c, 
and fails  ve ry  rapidly with inc reas ing  hd. We then have f r o m  Eq. (9) 

b ~ =  (--1)~-IlB=~I ( ( 2 k ) ,  la----~ ) hd hd~l .  (11) 

When L(~7) is g iven by Eq.  (7) o r  (10). Eq.  (5) can be wri t ten in the f o r m  
k - - 1  

b - -  

f s 2 t'(s) A8 
s -  v ds ----- 8 - ~  f* (o). (12) 

U 

where a = exp (- l r /SA),  b = exp (Tr/6A), s = exp (Try/A6), v = exp Wx/A6), f*(v) = f(x). When k = 1, we 
have the boundary condition of the f i r s t  and tlfird kinds, and k = 2 co r r e sponds  to the boundary condition 
of the second kind. At the s a m e  t ime,  if L(~) is given by Eq. (7), we mus t  se t  A = 1 in Eq.  (12). 

Using the Cauchy type invers ion  fo rmulas  in Eq. (12), we obtain 

A6 X(s)f*(s) ds + C o (13) r (v) - ~_, ~ ~ . , 
n v ~ - x ( v )  s T - ( s  v) 

whe re  X(v) = 4 ( b -  v) ( v -  a). 

In tegra t ion of Eq. (13) yields  the t e m p e r a t u r e  t(x) on the lower face of the band for  [xl < 1. The 
a r b i t r a r y  in tegra t ion constant  and the constant  C o can be de te rmined  f rom the condition t(:Ul) = 0. 

When L(~?) is given by Eq.  (6) and hd is a rb i t r a ry ,  Eq.  (5) is  solved approx imate ly .  Since the s e r i e s  
in Eq. (8) converges  absolute ly  for  u < 2, all  the subsequent  conclusions a re  valid for  1 < 6 < ~o 

Equation (5) will be solved by the asympto t ic  method developed in [1-3]. This  is done by substi tut ing 
Eq. (8) in Eq, (5) with the r e su l t  

1 1 co b 

--1 --1 

The solution of this equation will be sought in the f o r m  of a s e r i e s  in powers  of 6 -2 

r (x) = ~ ~-2Jt~ (x). (15) 
1 = 0  

Substituting Eq.  (15) in Eq.  (14), and equating the expres s ions  in f ront  of equal powers  of 6, we obtain a 
se t  of in tegra l  equations for  the functions th(x), the solution of which can be obtained by inver t ing the Cauchy 
in tegra l :  
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TABLE 1. Maximum Tempera ture  on the Lower Surface of the Band 
and the Layer  as a Function of 5 

5 1,5 2 2,5 3 5 10 

~ t  e 
To 

t a 
To 

M} tc 
2To 

D,8556 

0,8896 

0,9608 

0,9104 

0,9209 

0,9856 

0,9405 

0,9443 

0,9923 

9,9567 0,9835 

0,9593 0,9842 

0,9955 0,9990 

0,9956 

0,9959 

0,9999 

l 

--I 

' z n - ,  (16)  

t'~(x)-- 1 [ ~Vl--~2d~ ff E b~-~t'~(s)(s--~)2(n-k)-lds 

n = l ,  2 . . . .  
After integration subject to the condition t(:~l) = 0, we obtain the tempera ture  t(x) for [x[ < 1, y = 0. 

Consider an example. Suppose that on the uppe r surface of the band we have a constant tempera ture  
T(x, 6) = T O and that for ix[ < 1 the lower surface is thermal ly  insulated, i.e., q(x) = 0. We then have t*(x, 
y) = TOY/6 and the express ion for t(x) on the thermally insulated region, deduced f rom the approximate 
formula, is 

N--I n 

t (x) = T ] / 1 - - ~  1 - -  e~6-=nx 2i-2. + 0 (6 -=N) . (i 7) 
n=l i=I 

In this expression 

b 1 b~ b 3 b~ 
Ell : --2--, E22 - -  2 ' ~33 : - - 2 -  , e21 2 ' 

1 ~ 11 _ ~  1 
ca1 = ~ -  i - - - ~  bibs - -  b3' ca2-- 4 bib2 + 4b a. 

The coefficients b k calculated f rom Eq. (11) for h = ~ are  

b 1 = 0.8225, b 2 = --0.1353, b a = 0.0318. 

The prec ise  value of t(x) found f rom Eq. (13) can be determined f rom 

2 

t ( x ) =  T~ E arcsin/cth-~-~--csh ~ - - - e x p [  ~ 8 [ ( - - 1 ) k ~ - ] }  �9 " (18) 
k=l 

Table 1 gives the maximum tempera tures  t e and t a calculated f rom both the exact formula  (18) and 
the approximate formula  (17) for x = 0 for different values of 6 = d/l .  It is c lear  f rom Table 1 that for  
= 1.5 the approximate solution differs f rom the exact solution by less than 4~o, and the relat ive e r r o r  de-  
c reases  rapidly with increasing 6. 

2. Consider an infinite layer  of thickness d on the upper surface of which we have conditions of the 
first ,  second, o r t h i r d  kind, and on the lower surface of which we have a given heat flux q(r) on a c i rc le  
of radius l, the remainder  of this surface being kept at ze ro  t e m p e r a t u r e .  We shall solve the problem for 
the axially symmet r i c  case.  In t e rms  of the dimensionless var iables  r e fe r red  to the radius l, the bound- 
ary  conditions are  then of the form given by Eqs.  (1) and (2) if we replace y by z and x by r in these condi- 
tions. The main tempera ture  field will be assumed to be known as in the case of the band. Applying the 
integral  Hankel t ransformat ion  to the heat t ransfer  equation for  the additional temperature ,  and taking into 
account the corresponding boundary conditions, we have the following integral  equation for the function t(r) 
= t ( r ,  0 ) :  
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0 0 

where f(r) = q ( r ) -0 t* ( r ,  0) /8z ,  and the function L0?) for the boundary conditions of the first ,  
third kind is given by Eqs.  (7) and (6), respect ively.  

Equation (19) can be reduced to the Fredholm equation of the second kind [3] 

f I ; <+!] 2 ~ du ~d~ [ ( ~ ) - -  ~ P dp 

t" * 0 

where 

second, 

(19) 

o r  

(20) 

M 6 '  
0 

Substituting Eq. (7) in Eq. (21), 

d~) = 2 ( - -  1)~(2k + 2)! ~(2k + 3), d~ ~) = [4-r  
4~k+1~ (k!) ~ 

F o r  the third boundary condition the coefficients d k are evaluated by numerical  integrat ion.  
of the integral equation (20) will be sought in the form 

t (,1 ~XJ 
n~O 

P 

k=O 
( 2 1 )  

dk = ('--- 1)k .i 22~-1~ (k!) 2 [L 01) - -  1] ~12k+2d~]. 
0 

we have, respectively,  for the f i rs t  and second boundary conditions 

(22) 

The solution 

(23) 

Substituting Eq. (23) in Eq. (20), and equating coefficients of equal powers of 5, we obtain a number  of r e -  
cu r rence  relat ions f rom which we success ive ly  determine the tn(r ). 

Consider  a special  case .  Suppose that f(r) = - T  o / S i n E q .  (19). This cor responds  to the case where 
on the upper surface  of the layer  (z = 6) we specify the tempera ture  T = To, and the c i r cu la r  par t  of the 
lower surface (z = 0, r < 1) is thermal ly  insulated. The temperature  t(r) on this par t  of the lower surface,  
found by the above method, is 

t (r) = V ' ~ - ~  1 363 + r ~ + 966 

In this case,  

d o = 0.3825, d 1 = 0.2475, d 2 = 0.1128. 

The table gives the maximum value of the temperature ,  te, calculated f rom Eq. (24) for  r = 0 for a 
number  of values of 6 = d / l .  

We note that, as the relat ive width of the band increases ,  the per turbed tempera ture  field rapidly 
tends to the value obtained for the half-plane (this will be pract ical ly  so for d / l  > 4). The tempera ture  t(r) 
for  the layer  is pract ica l ly  the same as the tempera ture  for the half -space for a still lower relat ive thick- 
ness  of the layer .  These  resul ts  are  of in teres t  because they enable us to judge the validity of the expres -  
sions for  a half-plane and haK-space  in the case of a band and a layer .  

Having found the tempera ture  t on that par t  of the lower surface of the band or layer  on which the 
heat flux is specified, we know the limiting value of the tempera ture  over the entire lower sur face .  The 
tempera tu re  inside the above regions can be determined through the corresponding Four ie r  or  Hankel inte- 
g ra l  t ransformat ion.  

We note in conclusion that the above resul ts  can also be used when q = 0 to determine the t empera -  
ture field in a band [Yl -< d and a layer  ]zl -< d in the presence  of a thermally insulating c rack  lying along 
the middle of the band (y = 0) or  on the middle plane of the layer  (z = 0). In th~s case, the main t empera -  
ture t*, wlfieh is established in these regions in the absence of the crack, must  be divided into a symmet r i c  
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and an a n t i s y m m e t r i c  pa r t  re la t ive  to the line or  plane containing the c rack .  The p r e sence  of the c rack  
does  not affect  the s y m m e t r i c  pa r t  of the t e m p e r a t u r e  field, whilst the a n t i s y m m e t r i c  pa r t  is pe r tu rbed  
and this pe r tu rba t ion  can be de te rmined  as indicated above.  

T 
t* 
t 

T c 
q 
X, y, Z 

6 =d/ l ;  
d 
l 

h 

J0 
F 

B2k 

NOTATION 

is the required temperature; 
is the temperature for homogeneous boundary condition on the lower face; 
is the additional temperature due to the mixed boundary conditions; 
is the temperature of ambient medium; 
is the heat flux specified on the lower face of the band or layer; 
are the Cartesian coordinates; 

is  the width of band or  thickness  of l aye r ;  
is the half  length of region or  radius  of the c i rc le  on the lower  su r face  of band or layer ,  
respect ive ly ,  on which the heat  flux is specif ied;  
is the h e a t - t r a n s f e r  coefficient;  
is the B e s s e l  function; 
is  the hype rgeom e t r i c  function; 
is  the ze ta  function; 
a re  the Bernoui l l i  num be r s .  

I~ 

2. 

3. 
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